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Ferroelastic phase transitions in polarised media 

V G Bar’yakhtar, I M Vitebskyt, N M Lavrinenko and V L Sobolevf 
Donetsk Physico-Technical Institute of the Ukrainian Academy of Sciences: 
340114 Donetsk, USSR 

Received 4 February 1988, in final form 13 May 1988 

Abstract. The critical behaviour under ferroelastic phase transitions in polarised crystals is 
studied. The fundamental role of the effects due to the violation of the rotational invariance 
of the energy of a system in a magnetic or electric field as well as of the effects connected 
with the non-local character of dipole interactions is elucidated. The acoustic properties of 
polarised crystals in the limit of small wavevectors are investigated using the magnetostatic 
(or electrostatic) approach. 

1. Introduction 

Ferroelastic phase transitions constitute rather a wide range of magnetic and structural 
phase transitions in solids. From the symmetry point of view the proper ferroelastjc 
transition is a transition whose order parameter is linearly connected with non-iso- 
morphic striction, i.e. with macroscopic deformations of the crystal lattice. This con- 
nection is known to cause anomalies of elastic properties of these systems and to 
determine, to a great extent, peculiarities of their critical behaviour in the most general 
sense (Patashinski and Pokrovskii 1982, Cowley 1976, Schwabl 1985, David 1983, 
Villain 1970, Levanuk and Sobianin 1970, Fossum 1985). This paper is devoted to 
the investigation of these peculiarities for the case of ferroelastic phase transitions in 
polarised crystals, i.e. in crystals possessing either a magnetic or electric dipole moment. 
Polarisation can be either spontaneous (pyroelectrics and ferromagnets) or induced by 
external field. Peculiarities of the critical behaviour which will be considered below have 
a completely general character and do not depend OI? particular physical causes of the 
phase transition, i.e. they do not depend on the microscopic realisation of the order 
parameter. The main cause of these peculiarities in polarised media is the violation of 
invariance of the crystal energy with respect to its orientation in the presence of an 
external field. The present paper is intended to analyse these problems within a purely 
thermodynamic approach without application to any model assumption (Bar’yakhtar et 
a1 1986a, b). 

The acoustic vibration spectrum of an infinite crystal is activationless; therefore at 
sufficiently smallwavevectorsq, vibrationsin asoundwave areso slow that any subsystem 
(e.g. a magnetic one) has time to adjust itself to the field of deformation arising in the 
sound wave. This is associated with the fact that at q+O the velocity of sound is 
determined by the static elastic moduli of the crystal which are formed with the 
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80 V B Bar'yakhtar et a1 

participation of all subsystems interacting with the deformations (the hydrodynamic 
principle of local equilibrium). It is this region of the acoustic vibration spectrum which 
we shall study below. At large wavevectors the approach based on continuum elasticity 
theory is insufficient, because it becomes necessary to write explicit dynamic equations 
for various internal degrees of freedom which interact with the sound; this goes beyond 
the local equilibrium principle and requires application of model assumptions (Melcher 
1972, Akhiezer etall967, Vlasov 1962, Chow and Keffer 1973, Brown 1965, Bar'yakhtar 
and Tiirov 1985, Sai'yakhtar er al1985a, 3, Maugin and Eringen 1972, Zhe!norovich 
1987, Vendik and Mironenko 1974, Sedov 1970, de Groot and Mazur 1962). 

In the absence of magnetic and electric fields the energy density of a weakly deformed 
crystal is determined by the symmetric deformation tensor (Landau and Lifshitz 1965): 

w = l  2 C a p . p  uapu/lv. (1) 

Here and below components U of the deformation tensor describe small deviations '?. from the equilibrium position arising in a sound wave. The same is valid for other 
components of the distortion tensor: 

uap = h . p  + up.,) "ap  = @ w . p  - up.&). 

To derive equation (l), we used two assumptions. 

(i) w is invariant with respect to the orientation of the body volume element in a 

(ii) Long-range (Coulomb and dipole) interactions are absent. 
space (rotational invariance). 

In the presence of either a magnetic or an electric field, both these assuqt ions are 
violated. 

At the point of ferroelastic transition the proper quadratic form (1) loses positive 
definiteness, and anomalies due to the critical behaviour are completely determined by 
anomalies of the crystal elastic properties. Here we represent rather a simple reasoning 
to explain this conclusion. 

In the absence of external fields the expansion for the energy in powers of order 
parameter 7 and deformation tensor ia at the ferroelastic transition has the following 
structure: 

w(7, a) = d y q )  + w'O'(a> - ~ ~ l , i c v q l u / l v  

W y q )  = +a(O)qiql + . . . 

(3) 

(4) 

where 
w'O'(a) = I (0) 

2cLYp.p u 4 u P J .  

Here q i  are the order parameter components (the index i enumerates the lines of 
irreduciblerepresentationresponsible for the phase transition); c($+,are the trial elastic 
moduli (the structures of the expressions for w(O)(a> and w ( i )  from (1) are exactly the 
same). 

Now let us change from the Cartesian components uap of the deformation tensor to 
their linear combination fulfilling irreducible representations of the symmetry group of 
high-symmetry phase 

U,, = g.pJ,up. 
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Here Tis the number of irreducible representations and iis the index of its line. Rewriting 
(3) and (4) in the new variables, we obtain 

w(q, a) = w q q )  + w ' y a )  - Aqiui (5) 

The trial elastic energy (6) presents in a detailed form only the term corresponding to 
irreducible representation by which the order parameter (ui - vi) is transformed. The 
index r for this representation is omitted. The value of do) in (6) is the corresponding 
linear combination of the elastic moduli ~ 3 , ~ " .  

Using the condition aw(q ,  a)/aq = 0, we eliminate the variables v i  from equation 
(5) .  This yields equation (1) for the free-energy density 

w(a) = +ca;c,uvu,puuv = gcujuj + . . . (7)  
where 

c = c(0) - ~2 a(0) 1 .  
If, by using the condition dw(q ,  i.i)/dir = 0, we eliminate the deformation tensor 

components from (j), we then obtain 

w ( q )  = i a q i q i  + . . . (8) 
where 

a = a(0) - /22/cO. 

The symmetry phase stability region is determined by one of equivalent inequalities 

a > 0  or c a 0 .  (9) 

At the ferroelastic transition point 

a = O  ( c  = 0 )  

the quadratic forms (l), (3), ( 5 ) ,  (7) and (8) simultaneously lose their positive 
definiteness. 

Deformation arising in a sound wave at q + 0 is adiabatic; therefore, throughout the 
paper, oniy adiabatic elastic moduii are used. However, since the eiasric modulus c from 
(7)  and (10)  determines the energy of the non-isomorphic irreducible deformation 
(corresponding to purely transverse sound), the adiabatic and isothermal values of this 
modulus in the symmetric phase coincide. 

Critical peculiarities of the elastic properties (in particular, the critical behaviour of 
a long-wavelength sound) can be analysed using the equivalent expressions ( 1 )  or (7)  for 
the true (renormalised) elastic energy. We recall once again that these expressions are 
valid, strictly speaking, only in the absence of elastic and magnetic fields since, in their 
derivation, the use was made of invariance of the energy density with respect to the 
orientation of the body volume element in a space-even in the presence of homo- 
geneous fields, this invariance either partially or completely (for crossed electric and 
magnetic fields) disappears. Prior to the start of the discussion on the effects associated 
with the violated rotational invariance, it should be stated which peculiarities in the 
sound behaviour appear at proper ferroelastic transitions in non-polarised crystals 
without piezo-electric and piezomagnetic effects. 
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The combined analysis of the stability (positive definiteness) of the quadratic form 
(1) or (7) and expressions for the velocities of long-wavelength sound in crystals of 
various syngonies show the following in all cases. 

(i) At the critical point (10) the velocity of either one or two branches of transverse 
sound propagating in certain directions becomes zero (Cowley 1976). 

Then the direct consequence of (i) is the so-called reciprocity principle consisting of 
the equality of the velocities of the transverse sound with the x polarisation propagating 
along the y axis and that with y polarisation propagating along the x axis (the x and y 
directions are perpendicular to each other). Thus, in addition to (i), the following 
statement is true. 

(ii) If the velocity of the x-polarised transverse sound wave with q/Iy has become 
zero, the same will happen to they-polarised wave with q/ lx .  

In the above case the peculiarities of the critical properties are unambiguously 
determined by the symmetry of the initial phase and by the transformation properties 
of the order parameter of the proper ferroelastic transition. In fact, the macroscopic 
symmetry of the initial phase and the number of irreducible representations responsible 
for the ferroelastic phase transition unambiguously determine the peculiarities of elastic 
properties (includinglong-wavelength sound) in the critical region. It is elasticsubsystem 
that is abnormally fluctuating in this case. A similar situation is typical of the phase 
transition theory. 

However. forproperferroelastic phase transitionsin polarisedmedia (in the presence 
of either magnetic or electric fields), this statement is already invalid. We shall see below 
that, for the second-order phase transition in a polarised medium, the critical behaviour 
in various cases can be different even when there is the same symmetry of the order 
parameter. This is connected with the violation of rotational invariance of the energy 
density w i n  the presence of the field. 

As was mentioned above, acoustic vibrations in the small-wavevector q limit can be 
considered within the continuum elasticity theory, the velocity of sound being deter- 
mined by the same parameters (adiabatic moduli) as the static elastic properties. 
However, equation (1) for the energy density in the presence of the field is not acceptable 
since it was derived by assuming rotational invariance. and violation of this invariance 
results in the appearance of anti-symmetric part unP of the distortion tensor in the 
expression for w. D e p e d e m e  of defisity energy en Qqu21itadvely changes the chaiactei 
of critical behaviour of ferroelastic phase transition. Furthermore the character of the 
sound propagation is greatly influenced by the long-range dipole interaction which is 
always present in polarised media as well as in crystals possessing linear piezo-electric 
or piezomagnetic properties (Landau and Lifshitz 1982). All these peculiarities will be 
considered in the following two sections within the consistent approach framework. For 
definiteness. we shall deal with magnetic polarisation and magnetic field. The cases of 
electric polarisation and electric field differ from the above one only by differences in 
notation (naturally, if a dielectric medium is meant). Everywhere in this paper the 
magnetostatic approximation is used. Strictly speaking. for a closed description of 
acoustic vibrations in polarised media and media with a linear piezomagnetic effect, 
even at q+ 0 one should supplement the elasticity theory equations with equations of 
continuum electrodynamics. However, taking into account the effects of elec- 
tromagnetic interaction lagging does not change the results obtained below considerably. 
We shall return to this question at the end of this paper. 
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2. Effective elastic energy of a sound wave in a polarised medium 

In view of the above considerations, we proceed from the following expression for the 
potential energy of a magnetically polarised medium (see, e.g., Akhiezer et a1 1967): 

W =  d3x(wi - M * H e x ,  -'&V*H,) (11) i 
where wi is the density of internal energy which is a function of the magnetisation M and 
distortion tensor u ~ , ~ .  The second and third terms in the integrand describe the Zeeman 
energy (He,, is the external field) and the dipolar interaction energy (H, is the dipolar 
field), respectively. 

The internal energy density wi does not depend on the orientation of the crystal 
volume element in a space. The Zeeman term - M . H e x ,  in (11) is responsible for 
violation of the rotational invariance of total energy W. The dipolar contribution to W 
possesses only global rotational invariance since the dipolar field H, at the fixed point 
depends on the magnetisation distribution throughout the whole crystal. The qualitative 
peculiarities of long-wavelength sound propagation in polarised media are determined 
by the absence of local rotational invariance of the latter two contributions to the energy 
in (11). 

Let us determine the contribution to the energy (11) associated with the propagation 
of asmall-amplitude sound wave. For this purpose, we expand each term of the integrand 
in a power series of small deviations from the equilibrium position: i.e. in a series of 

m = M - M ;  (12) 
whereM is the equilibrium polarisation. Taking into consideration the rotational invari- 
ance of the function wi, we have, in a harmonic approximation, 

The rotation operator 8 in the Euler representation is expressed in terms of the distortion 
tensor component (Melcher 1972) as follows: 

8 = [i - 2Q + (a - &)(a + 4]1q - Q - &)-I 

= i + c j  + i f 3 2  + i(Q& + &a) + o ( U ; , p ) .  (15) 
The geometrical meaning of the value of p is simple, namely it is the deviation of 
polarisation from the equilibrium value in the reference system locally connected with 
the crystallographic axes. According to (14) and (15), 

p = m - CjM + 4(h2 - Q& - &O)M - h m  + . . .. 
Replacement of m in (13) by p (Le. by a value which does not change on rotation of the 
crystal volume element) automatically provides rotational invariance of the cor- 
responding terms of the expansion of w,. The meaning of the other values of (13) is as 
follows. is 
connected with the piezomodulus tensor h by the relationship? 

is the magnetic susceptibility tensor at u ~ . ~  = 0. The third-rank tensor 

;I = ii @@.pi = X m g A u , p r ) .  (16) 
t In accordance with the comments made after equation (lo), the materia! tensors 2,  A and 2 are adiabatic. 
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w(O)(ii) is the trial elastic energy equal, by definition, to w, - $ at p = 6 (in the harmonic 
approximation, do) depends only on the symmetric part of the distortion tensor u ~ , ~  
since ea@ term in equation (13) (it concerns do) too) should have rotational invariance). 
Finally, H coincides with the strength of the internal magnetic field H .  For an ellipsoidal 
specimen, 

H = He,, - 4xfiif (17) 
where fi is the tensor of demagnetising coefficients. Naturally, the parametersk, and 
i as well as the ‘trial moduli’ do) in the expression for do) and, finally, the uniform 
equilibrium deformation (which is used as a reference point for the non-uniform defor- 
mations u ~ , ~  appearing in the sound wave) and, cons$quently, the tensor components 
are functions of H. In particular, at H = 0 the values M and can also become zero for 
either a paramagnet or an antiferromagnet without the linear piezomagnetic effect. 

Dipolar interaction (the last term in ( l l ) ) ,  firstly, leads to a demagnetisingfield which 
is reduced to the replacement of He,, by H from (17) in the Zeeman energy (Akhiezer 
et a1 1967). Secondly, additional energy w, appears, which is connected with non- 
homogeneous part h of the dipolar field H,. For a plane wave, we have 

h = -4nn(n * m) w, = 2n(n m)’ (18) 
where n = q/Iq/  is the unit vector coinciding with the plane-wave propagation direction. 

From equations (13)-(15), (17) and (B), we obtain the following expression for the 
plane-wave energy density (neglecting the kinetic energy pzi2/2 where p is the material 
density): 

w(m, a, h) = 6 + a(m - hi) * i - y m  - hi) - ( m  - ;if> . ( i a  - &H) + 2n( n . my 
+ w‘O’(a) - &’ &2H +if * [cj + (a; + dii)/2]H. (19) 

For the long-wavelength sound value, m adjusts itself to the instantaneous values Q 
and Cj in a quasi-static way. Thus, from the condition of min w with respect to m, we 
have 

m = hk + ,f(h - CjH) - [4n/K(n)] in{n  [ f ( h  - CjH) + hk]} (20) 
where 

Ah[,&, Vfn\  = 1 + 4xg. 23. 

Eliminating m from equation (19), we obtain finally 

w(a ,  6) = -a(ia - h H )  - i ( i C  - CjH) + w‘”((a) - * h 2 H  + [2n/K(n)j 

x {n * [i(h - c j H )  + CjR]>2 + if * [& + (a; + 4 Q ) / 2 ] H .  (21) 

This expression determining the effective elastic energy of a plane sound wave in a 
polarised medium is the main result of this section. While deriving relationships (21), 
no model assumptions were used-equation (21) is as general as equation (1) for the 
elastic energy of the non-pobarised medium. It is important that all parameters involved 
in equation (21), namely M ,  i ,  i and e(’) (or e from equation (27)) are independent 
material constants which can be measured (naturally all these constants are the functions 
of temperature and field H ) .  

The most interesting is the case of MllH where the polarised crystal energy is a 
minimum with respect to the crystal orientation in space. In view of the anti-symmetry 
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of the tensor 4 the last terms in (19) and (21) are equal to zero and, instead of (21), we 
have 

or in an equivalent form 

w(u,.p> = ~ ~ ‘ n , ~ , u . v ~ a . ~ ~ u . u .  (23) 
The relation between 
Appendix (equations (A1-4)). 

from (23) with the material tensors from (22) is given in the 

The long-wavelength sound spectrum is directly determined by the tensor e: 
PO, = -6w/6u, = c,,p.u,, a2u,/axpax,. 

Hence the equation for the velocities and polarisations of the three sound branches is 

P U 2 &  = c’a,p,u.vnpnY% (24) 
where U is the velocity of sound. 

So the etfective elastic energy of a plane sound wave propagating in a polarised 
medium ai MIIK is determined by either of the equivalent expressions (22) or (23). In 
comparison with a non-polarised medium, terms of ir4 and h4 type appear an the 
expression for the elastic energy, and these terms disappear if we set PI = M = 0. 
Moreover, since any polarised medium is at the same time piezomagnetic (or piezo- 
electric), in accordance with the work of Landau and Lifshitz (1982) the effective tensor 
of elastic moduli depends on the direction of the sound wave propagation. This effect, 
as well as all the terms in equations (19)-(22) containing n as a factor are due to the 
energy w, of the non-homogeneous dipolar field h from equation (18). 

As was mentioned in 0 1 , the qualitative difference in the effective elastic energy (22) 
from (1) is determined by two independent circumstances: firstly, by the violation of 
rotationalinvariance of energy density a tH # 0; secondly. by the presence of long-range 
dipole forces which are not reduced by renormalisation of the elastic moduli. 

To conclude this section, we rewrite the abov? formulae for the particular case when 
the uniaxial (hexagonal) crystal is in a fieldHIlMIlz, where z is the symmetry axis. The 
coefficients in the effective e1;stic energy of a plane sound wave are expressed via the 
material tensors e, i, jf and M as well as via the field H inside the sample. In the case 
under consideration the following components of the material tensors are non-zero: 

Quite naturally, all values in equation (25) are the functions of the field H = yz. In 
particular, if, in the case of either a paramagnet or an antiferromagnet a t H +  0, M also 
becomes zero, the tensor i can also become zero if at H = 0 the magnetic symmetry of 
a crystal does not permit the existence of a linear piezomagnetic effect. 

Provided that we bear in mind the fact that as far as elastic properties are concerned 
the hexagonal crystal possesses an axial symmetry, it is quite sufficient to consider the 
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case where the vector n lies in the x-z plane. Thus: in equation (23) for the effective 
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The moduli c1, c2 and cg correspond to the case of a uniformly deformed crystal (for 
details see § 3). 

For a hexagonal crystal the system of equations (24) is split at an arbitrary direction 
n into two independent systems (similarly to the case of a non-polarised crystal (Landau 
and Lifshitz 1965)). The first system describes the transverse sound with a polarisation 
ully. According to equations (26) and (24) 

U I n,z: p U 2  = c6f,n; + cl.’,. (31) 
The second system leads to a biquadratic equation for two sound waves polarised in the 
x-z plane. The solution of this equation for an arbitrary n is very cumbersome; therefore 
we restrict ourselves to the most interesting and simple cases of n(1z and nllx. 

For a iongitudinal sound, 

4 nllz: p ~ ! ~  = = cgj + 4njL$x(/(1 + 4 X X ; l )  (32) 

ulln 1 z :  puf- = c i i .  (33) 

(34) 

For transverse sound. 

U i nllz = c1 = c44 - AX-H + +H(M - X - H )  

In a non-polarised medium without a piezomagnetic effect the velocities U, and urI  
coincide (the reciprocity principle described in § 1) and are equal to c,/p. In this case, 
however 

(36) 
The first term on the right-hand side of equation (36) is due to the violation of rotational 
invariance in the field and the second term is the consequence of the non-local character 

p(v?- - u : ~ )  = 2AxLH + [4n/(1 + 4nx-)][~~A + &(k - xIH)]*. 
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of dipole interaction. In the polarised crystal the sign of the difference U,- - U, can be 
either plus or minus, but in the non-polarised crystal (but with a piezomagnetic or a 
piezo-electric effect) this sign is always positive (Landau and Lifshitz 1982). 

The effect of reciprocity principle violation for the transverse sound in magnetic field 
was first revealed by Melcher (1970). 

3. Anroma!ies ofthe dastie properties ai ferroeiastic phase transitions in a poiariseci crystai 

As was mentioned in § 1, the critical anomalies at ferroelastic phase transition are 
completely determined by peculiarities of the long-wavelength sound spectrum. The 
present section is aimed at showing the effect of the qualitative difference of equation 
(1) from (22) or (23) for the effective elastic energy of the sound wave on the critical 
behaviour of the system. For definiteness, we consider a ferroelastic phase transition in 
a uniaxial (hexagonal) crystal in the presence of a field HI12 where 2 is the symmetry 
axis. The results obtained are so typical that it is useless to consider other examples since 
all principal points remain unchanged. 

Let us start from the definition of the ground state and the phase transition point. 
Without any loss of generality, we can choose the x axis such as to preserve the condition 
my = 0 in both phases. To avoid complications connected with the anisotropy of the 
tensor fi of demagnetisation coefficients and those due to existence of a thermo- 
dynamically stable domain structure in ferromagnets we assume that the sample has the 
shape of a thin sheet with the normal coinciding with the y axis. In this case the 
homogeneous part of a dipole field is zero at both sides of the critical point, and the 
contribution of the non-homogeneous part of a dipole field is known beforehand to be 
absent on determination of the homogeneous ground-state energy. Thus, for the ground- 
state energy density, instead of (11) we have 

w = w i - M . H  (37) 
whereH =He.&. 

Relationships concerning the homogeneous ground state can be obtained from the 
formulae in § 2. For this purpose, it is quite sufficient to omit everywhere terms due to 
the dipole energy which is equivalent to omitting all terms containing ,z as a factor. For 
the effective elastic energy $(ii, 4) of the homogeneous state, instead of (22) we have 

$(cl, 4) = - 4 ( i i i  - 4H). i ( i a  - CjH) + w‘O’(ii) - I& 42H 

G(ii> 4) = +a * ea - a * I; + f4 * p4 

(38) 

(39) 

or in an equivalent form 

where e is the tensor of elastic moduli corresponding to homogeneous deformation (i.e. 
neglecting the dipolar contribution (18) to the energy of deformed crystal) 
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The qualitative difference between equations (1) and (39) foi the effective elastic 
energy is due exclusively to the violation of rotational invariance in the latter case. At 
H+ 8, this difference is lost. Moreover, a comparison of equations (22) and (38) shows 
that always 

w ( a ,  &) 5 $(a, 6). (43) 

This is because the energy of the non-homogeneous dipole field is positive (equation 

So equations (39)-(42) determine the energy of the uniformly deformed polarised 
(18)). 

crystal. In the case of hexagonal crystal and taking into account (25),  we have 

or 

G(um,b) = k l l ( u : ~  + ut,) ., f c12u,u,yy + 4c33uzz + 2c66u:y + c13uzz(u, + uyy)  

(45) + fcl(u:., + 2 + kz(u:., + U:.),) + c3(u,,,uz.x + uy.zu,,),) 

where the moduli c1, c2 and c3 are determined in (29). 
If there are no mechanical stresses at the crystal boundary (free specimen), the 

hexagonal phase stability region is determined by the positive definiteness of the quad- 
ratic forms (44) and (45). Stability with respect to isomorphous distortions is determined 
by the inequalities 

(cll + c12)c33 - 2c:3 > 

c66 = +(cl1 - c12) > 0. 

c11 + ci2, c33 > 0. (46: 

(47) 

Stability with respect to rhombic distortions is determined by the inequality 

Stability of a crystal with respect to monoclinic distortions is determined by the relation- 
ships 

C @ H ( i  - X-H)  > (ibX-H)2 c , ,H>Q (48) 

C I C 2  > c: ~ 1 ,  ~2 > 0. (49) 

or, in an equivalent form, 

It should be mentioned that under the conditions of crystal stability against spon- 
taneous deformations, isothermal moduli should be used because similar inequalities 
for adiabatic moduli appear to be weaker. In this particular case, equations (47)-(49) 
for isothermal and adiabatic cases exactly coincide (see comment after equation (10)). 
For the conditions of stability against isomorphic deformations, it is isothermal moduli 
that should be used in equations (46). 

We shall regard conditions (46) and (47) as fulfilled and consider a ferroelastic 
phase transition accompanied by the appearance of monoclinic distortions. This phase 
transition occurs by two-dimensional active irreducible representation of the hexagonal 
point group. This representation is realised by pairs of values 

{m, > my>, { u x z  , uyz)  or {@xz  , ~ y z ) .  (50) 
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According to (48) and (49) the phase transition point in a free specimen is determined 
by either of the equivalent inequalities 

or C I C ?  = c:. 

On passing the critical point (51), a free specimen undergoes a spontaneous lowering 
of symmetry, i.e. monoclinic distortions (ux2 # 0) appear and the specimen changes 
orientation with respect to the external field (qZ # 0) so as to provide fulfilment of the 
condition MIIMIIZ in the asymmetric phase. 

Comparison of (51) with (34) and (35) shows that the velocity of sound at the critical 
point remains finite.? In the case of the ferroelastic phase transition, this means that the 
abnormally developed inhomogeneous fluctuations in the critical region are absent and 
that it is impossible for the system to split into domains. The thermodynamic potential 
as well as all its derivatives with respect to temperature and field H = HZ remain finite 
and continuous on approaching the critical point from both the symmetric and the 
asymmetric phase sides. At  the phase transition point itself, both the heat capacity 
and the susceptibility xZZ undergo a finite jump. The Landau theory quite adequately 
describes a phase transition of this type. 

The situation changes drastically if the field H tends to zero. In this case the critical 
point is determined by the condition 

C M  = 0 ( a tH  = 0) 

and two types of critical behaviour are possible. 

(i) If k or at least ĥ  is non-zero, then according to (35) and (34) the transverse 
velocity utz of sound with nllz becomes zero at the critical point. This leads to a non- 
analytical character of the thermodynamic potential at T+ T,; the heat capacity remains 
finite at the critical point, but its temperature derivative has a divergence as in the case 
considered by Villain (1970) and Levanuk and Sobianin (1970). 

(ii) IF the case of either a paramagnet or an antiferromagnet without a piezo-effect 
(i.e. at M and ĥ  equal to zero at H = O), at the critical point the velocity utL of z-polarised 
sound with n I z also becomes zero. The dimensionality of the space of wavevectors 
corresponding to anomalous fluctuations is equal to two (x-y plane) similarly to the 
uniaxial ferroelectric case and heat capacity has a logzrithmic divergence. 

In both cases in the asymmetric phase the specimen can split into plane-parallel 
domains (in the first case the piane of domain wails coincides with the basal piane x-y). 

A completely different situation occurs when the boundary conditions are such as to 
provide zero displacements U(.) at the specimen surface (a ‘squeezed’ specimen). One 
can show that in this case the point of stability loss at the ferroelastic phase transition 
coincides with the point where the velocity of sound becomes zero even at H # 0. Since 
the character of critical anomalies is determined by the dimensionality of the space of 
wavevectors corresponding to anomalous fluctuations, in this case one has to know 
which of the equations for the transverse velocity of sound, equation (34) or (35), is the 
first to become zero. If ut, < uti, the character of critical anomalies is the same as in case 
(i) at H = 0. If urz > ulL, the critical anomalies are similar to case (ii) at H = 0. Finally, 
it should be noted that, to preserve the boundary condition of the absence of dis- 
placements at the sample surface, the sample inevitably splits into compensating domains 
at the moment of passing the ferroelastic phase transition point. 
t Thus the conclusions of Cowley (1976) and David (1983) concerning the behaviour of the elastic properties 
of crystals at ferroelastic phase transitions are valid only in the absence of magnetic and elastic fields. 
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It should be noted that, from the symmetry point of view, all the above situations are 
equivalent since everywhere we deal with the second-order phase transition from the 
same phase by the same two-dimensional irreducible representation. Nevertheless the 
critical behaviour of the system as a function of the boundary conditions and the 
relationship between the material constants appear to be essentially different. 

Let us outline the problem of adequacy of magnetostatic (or electrostatic) approxi- 
mation for the description of acoustic properties of polarised crystals with a linear 
piezoxagnetic (or piezo-e!ectric) effect. Sound propagation in these media is always 
accompanied by the appearance of the time-dependent polarisation and, in the general 
case, one cannot speak separately about sound and electromagnetic waves. It should be 
noted that, because of this, even at q+ O the velocity of sound is not determined by 
static (adiabatic) elastic moduli. However, the difference between the values obtained 
within the magnetostatic and the electrostatic approximation is very small, of the order 
of the ratio of the velocity of sound to the velocity of light. If the phase transition order 
parameter is transformed as the linear combination of deformation tensor components 
and at the same time as either the magnetic or electric polarisation (and it is this situation 
which was considered above), then formally we have the same reason to state that the 
velocity of sound becomes zero at the critical point as for the fact that the electromagnetic 
wave velocity becomes zero. To be more exact, we should say that the velocity of certain 
Goldstone waves (which actually are the coupled vibrations of elastic and elec- 
tromagnetic fields) becomes zero. In this paper, we shall not go into the details of this 
problem. We shall mention only that taking into account the effect of electromagnetic 
interaction lagging does not change the most essential conclusions of the above 
investigation. Thus, in particular, the structure and energy of softening branches of the 
spectrum at q + 0 and T+ T, are still determined by the 'equilibrium' equations (20) 
and (22); however, the velocity of the corresponding excitations will differ from the 
values given by equations (24) or (34) and (35) by some numerical factor which depends 
slightly on temperature. 

Naturally, our investigation of the acoustic properties of crystals at the ferroelastic 
phase transition is valid only for long-wavelength sound-to be exact, for sound with 
q E - ' ,  where E is the correlation length of critical fluctuations. In the most important 
particular case (a free sample at H # 0 ) ,  anomalous critical fluctuations are totally 
absent, and the above formulae are valid even at the most critical point where the velocity 
of sound is finite. 
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Appendix 

The components of the tensor e from equation (23) are expressed via the material 
parameters i, ,f, e, M ,  H and the vector n as 

A A  

(All = s - 2y -+ p 
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where 
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